/[MITgcm]/MITgcm/model/src/calc_gs.F
ViewVC logotype

Contents of /MITgcm/model/src/calc_gs.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download)
Thu May 28 15:09:29 1998 UTC (25 years, 11 months ago) by cnh
Branch: MAIN
Changes since 1.4: +2 -2 lines
Further memory saving changes for oarticular grids

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_gs.F,v 1.4 1998/05/28 03:34:52 cnh Exp $
2
3 #include "CPP_EEOPTIONS.h"
4
5 CStartOfInterFace
6 SUBROUTINE CALC_GS(
7 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
8 I xA,yA,uTrans,vTrans,wTrans,maskup,
9 U af,df,fZon,fMer, fVerS,
10 I myThid )
11 C /==========================================================\
12 C | SUBROUTINE CALC_GS |
13 C | o Calculate the salinity tendency terms. |
14 C |==========================================================|
15 C | A procedure called EXTERNAL_FORCING_S is called from |
16 C | here. These procedures can be used to add per problem |
17 C | fresh water flux source terms. |
18 C | Note: Although it is slightly counter-intuitive the |
19 C | EXTERNAL_FORCING routine is not the place to put |
20 C | file I/O. Instead files that are required to |
21 C | calculate the external source terms are generally |
22 C | read during the model main loop. This makes the |
23 C | logisitics of multi-processing simpler and also |
24 C | makes the adjoint generation simpler. It also |
25 C | allows for I/O to overlap computation where that |
26 C | is supported by hardware. |
27 C | Aside from the problem specific term the code here |
28 C | forms the tendency terms due to advection and mixing |
29 C | The baseline implementation here uses a centered |
30 C | difference form for the advection term and a tensorial |
31 C | divergence of a flux form for the diffusive term. The |
32 C | diffusive term is formulated so that isopycnal mixing and|
33 C | GM-style subgrid-scale terms can be incorporated b simply|
34 C | setting the diffusion tensor terms appropriately. |
35 C \==========================================================/
36 IMPLICIT NONE
37
38 C == GLobal variables ==
39 #include "SIZE.h"
40 #include "DYNVARS.h"
41 #include "EEPARAMS.h"
42 #include "PARAMS.h"
43 #include "GRID.h"
44
45 C == Routine arguments ==
46 C fZon - Work array for flux of temperature in the east-west
47 C direction at the west face of a cell.
48 C fMer - Work array for flux of temperature in the north-south
49 C direction at the south face of a cell.
50 C fVerS - Flux of salinity (S) in the vertical
51 C direction at the upper(U) and lower(D) faces of a cell.
52 C maskUp - Land mask used to denote base of the domain.
53 C xA - Tracer cell face area normal to X
54 C yA - Tracer cell face area normal to X
55 C uTrans - Zonal volume transport through cell face
56 C vTrans - Meridional volume transport through cell face
57 C wTrans - Vertical volume transport through cell face
58 C af - Advective flux component work array
59 C df - Diffusive flux component work array
60 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
61 C results will be set.
62 C myThid - Instance number for this innvocation of CALC_GS
63 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
64 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
65 _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
66 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72 _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 INTEGER kUp,kDown,kM1
75 INTEGER bi,bj,iMin,iMax,jMin,jMax
76 INTEGER myThid
77 CEndOfInterface
78
79 C == Local variables ==
80 C I, J, K - Loop counters
81 INTEGER i,j,k
82 INTEGER afFacS, dfFacS
83
84 afFacS = 1. _d 0
85 dfFacS = 1. _d 0
86
87 C---
88 C--- Calculate advective and diffusive fluxes between cells.
89 C---
90
91 C-- Zonal flux (fZon is at west face of "salt" cell)
92 C Advective component of zonal flux
93 DO j=jMin,jMax
94 DO i=iMin,iMax
95 af(i,j) =
96 & uTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i-1,j,k,bi,bj))*0.5 _d 0
97 ENDDO
98 ENDDO
99 C Diffusive component of zonal flux
100 DO j=jMin,jMax
101 DO i=iMin,iMax
102 df(i,j) =
103 & -diffKhS*xA(i,j)*_rdxC(i,j,bi,bj)
104 & *(salt(i,j,k,bi,bj)-salt(i-1,j,k,bi,bj))
105 ENDDO
106 ENDDO
107 C Net zonal flux
108 DO j=jMin,jMax
109 DO i=iMin,iMax
110 fZon(i,j) = afFacS*af(i,j) + dfFacS*df(i,j)
111 ENDDO
112 ENDDO
113
114 C-- Meridional flux (fMer is at south face of "salt" cell)
115 C Advective component of meridional flux
116 DO j=jMin,jMax
117 DO i=iMin,iMax
118 C Advective component of meridional flux
119 af(i,j) =
120 & vTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i,j-1,k,bi,bj))*0.5 _d 0
121 ENDDO
122 ENDDO
123 C Diffusive component of meridional flux
124 DO j=jMin,jMax
125 DO i=iMin,iMax
126 df(i,j) =
127 & -diffKhS*yA(i,j)*_rdyC(i,j,bi,bj)
128 & *(salt(i,j,k,bi,bj)-salt(i,j-1,k,bi,bj))
129 ENDDO
130 ENDDO
131 C Net meridional flux
132 DO j=jMin,jMax
133 DO i=iMin,iMax
134 fMer(i,j) = afFacS*af(i,j) + dfFacS*df(i,j)
135 ENDDO
136 ENDDO
137
138 C-- Vertical flux (fVerS) above
139 C Note: For K=1 then KM1=1 this gives a dS/dz = 0 upper
140 C boundary condition.
141 C Advective component of vertical flux
142 DO j=jMin,jMax
143 DO i=iMin,iMax
144 af(i,j) =
145 & wTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i,j,kM1,bi,bj))*0.5 _d 0
146 ENDDO
147 ENDDO
148 C Diffusive component of vertical flux
149 DO j=jMin,jMax
150 DO i=iMin,iMax
151 df(i,j) =
152 & -diffKzS*zA(i,j,bi,bj)*rdzC(k)
153 & *(salt(i,j,kM1,bi,bj)-salt(i,j,k,bi,bj))
154 ENDDO
155 ENDDO
156 C Net vertical flux
157 DO j=jMin,jMax
158 DO i=iMin,iMax
159 fVerS(i,j,kUp) = (afFacS*af(i,j) + dfFacS*df(i,j))*maskUp(i,j)
160 ENDDO
161 ENDDO
162
163 C-- Tendency is minus divergence of the fluxes.
164 C Note. Tendency terms will only be correct for range
165 C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points
166 C will contain valid floating point numbers but
167 C they are not algorithmically correct. These points
168 C are not used.
169 DO j=jMin,jMax
170 DO i=iMin,iMax
171 gS(i,j,k,bi,bj)=
172 & -_rhFacC(i,j,k,bi,bj)*rdzF(k)*_rdxF(i,j,bi,bj)*_rdyF(i,j,bi,bj)
173 & *(
174 & +( fZon(i+1,j)-fZon(i,j) )
175 & +( fMer(i,j+1)-fMer(i,j) )
176 & +( fVerS(i,j,kUp)-fVerS(i,j,kDown) )
177 & )
178 ENDDO
179 ENDDO
180
181 C-- External haline forcing term(s)
182
183 RETURN
184 END

  ViewVC Help
Powered by ViewVC 1.1.22