/[MITgcm]/MITgcm/model/src/calc_gs.F
ViewVC logotype

Contents of /MITgcm/model/src/calc_gs.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.20 - (show annotations) (download)
Fri Jun 9 14:26:30 2000 UTC (23 years, 11 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint28
Changes since 1.19: +15 -1 lines
Included initialisations required for TAMC compatibility.

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_gs.F,v 1.20 2000/06/08 19:01:22 heimbach Exp $
2
3 #include "CPP_OPTIONS.h"
4
5 CStartOfInterFace
6 SUBROUTINE CALC_GS(
7 I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
8 I xA,yA,uTrans,vTrans,rTrans,maskup,maskC,
9 I K13,K23,KappaRS,KapGM,
10 U af,df,fZon,fMer,fVerS,
11 I myCurrentTime, myThid )
12 C /==========================================================\
13 C | SUBROUTINE CALC_GS |
14 C | o Calculate the salt tendency terms. |
15 C |==========================================================|
16 C | A procedure called EXTERNAL_FORCING_S is called from |
17 C | here. These procedures can be used to add per problem |
18 C | E-P flux source terms. |
19 C | Note: Although it is slightly counter-intuitive the |
20 C | EXTERNAL_FORCING routine is not the place to put |
21 C | file I/O. Instead files that are required to |
22 C | calculate the external source terms are generally |
23 C | read during the model main loop. This makes the |
24 C | logisitics of multi-processing simpler and also |
25 C | makes the adjoint generation simpler. It also |
26 C | allows for I/O to overlap computation where that |
27 C | is supported by hardware. |
28 C | Aside from the problem specific term the code here |
29 C | forms the tendency terms due to advection and mixing |
30 C | The baseline implementation here uses a centered |
31 C | difference form for the advection term and a tensorial |
32 C | divergence of a flux form for the diffusive term. The |
33 C | diffusive term is formulated so that isopycnal mixing and|
34 C | GM-style subgrid-scale terms can be incorporated b simply|
35 C | setting the diffusion tensor terms appropriately. |
36 C \==========================================================/
37 IMPLICIT NONE
38
39 C == GLobal variables ==
40 #include "SIZE.h"
41 #include "DYNVARS.h"
42 #include "EEPARAMS.h"
43 #include "PARAMS.h"
44 #include "GRID.h"
45 #include "FFIELDS.h"
46 #ifdef ALLOW_KPP
47 #include "KPPMIX.h"
48 #endif
49
50 C == Routine arguments ==
51 C fZon - Work array for flux of temperature in the east-west
52 C direction at the west face of a cell.
53 C fMer - Work array for flux of temperature in the north-south
54 C direction at the south face of a cell.
55 C fVerS - Flux of salt (S) in the vertical
56 C direction at the upper(U) and lower(D) faces of a cell.
57 C maskUp - Land mask used to denote base of the domain.
58 C maskC - Land mask for salt cells (used in TOP_LAYER only)
59 C xA - Tracer cell face area normal to X
60 C yA - Tracer cell face area normal to X
61 C uTrans - Zonal volume transport through cell face
62 C vTrans - Meridional volume transport through cell face
63 C rTrans - Vertical volume transport through cell face
64 C af - Advective flux component work array
65 C df - Diffusive flux component work array
66 C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
67 C results will be set.
68 C myThid - Instance number for this innvocation of CALC_GT
69 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
72 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
80 _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
81 _RL KappaRS(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
82 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
83 _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
84 _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
85 INTEGER k,kUp,kDown,kM1
86 INTEGER bi,bj,iMin,iMax,jMin,jMax
87 _RL myCurrentTime
88 INTEGER myThid
89 CEndOfInterface
90
91 C == Local variables ==
92 C I, J, K - Loop counters
93 INTEGER i,j
94 LOGICAL TOP_LAYER
95 _RL afFacS, dfFacS
96 _RL dSdx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
97 _RL dSdy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
98 _RL df4 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
99
100 #ifdef ALLOW_AUTODIFF_TAMC
101 C-- only the kUp part of fverS is set in this subroutine
102 C-- the kDown is still required
103
104 fVerS(1,1,kDown) = fVerS(1,1,kDown)
105 DO j=1-OLy,sNy+OLy
106 DO i=1-OLx,sNx+OLx
107 fZon(i,j) = 0.0
108 fMer(i,j) = 0.0
109 fVerS(i,j,kUp) = 0.0
110 ENDDO
111 ENDDO
112 #endif
113
114 afFacS = 1. _d 0
115 dfFacS = 1. _d 0
116 TOP_LAYER = K .EQ. 1
117
118 C--- Calculate advective and diffusive fluxes between cells.
119
120 #ifdef INCLUDE_T_DIFFUSION_CODE
121 C o Zonal tracer gradient
122 DO j=1-Oly,sNy+Oly
123 DO i=1-Olx+1,sNx+Olx
124 dSdx(i,j) = _recip_dxC(i,j,bi,bj)*
125 & (salt(i,j,k,bi,bj)-salt(i-1,j,k,bi,bj))
126 ENDDO
127 ENDDO
128 C o Meridional tracer gradient
129 DO j=1-Oly+1,sNy+Oly
130 DO i=1-Olx,sNx+Olx
131 dSdy(i,j) = _recip_dyC(i,j,bi,bj)*
132 & (salt(i,j,k,bi,bj)-salt(i,j-1,k,bi,bj))
133 ENDDO
134 ENDDO
135
136 C-- del^2 of S, needed for bi-harmonic (del^4) term
137 IF (diffK4S .NE. 0.) THEN
138 DO j=1-Oly+1,sNy+Oly-1
139 DO i=1-Olx+1,sNx+Olx-1
140 df4(i,j)= _recip_hFacC(i,j,k,bi,bj)
141 & *recip_drF(k)/_rA(i,j,bi,bj)
142 & *(
143 & +( xA(i+1,j)*dSdx(i+1,j)-xA(i,j)*dSdx(i,j) )
144 & +( yA(i,j+1)*dSdy(i,j+1)-yA(i,j)*dSdy(i,j) )
145 & )
146 ENDDO
147 ENDDO
148 ENDIF
149 #endif
150
151 C-- Zonal flux (fZon is at west face of "salt" cell)
152 C Advective component of zonal flux
153 DO j=jMin,jMax
154 DO i=iMin,iMax
155 af(i,j) =
156 & uTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i-1,j,k,bi,bj))*0.5 _d 0
157 ENDDO
158 ENDDO
159 C o Diffusive component of zonal flux
160 DO j=jMin,jMax
161 DO i=iMin,iMax
162 df(i,j) = -(diffKhS+0.5*(KapGM(i,j)+KapGM(i-1,j)))*
163 & xA(i,j)*dSdx(i,j)
164 ENDDO
165 ENDDO
166 C o Add the bi-harmonic contribution
167 IF (diffK4S .NE. 0.) THEN
168 DO j=jMin,jMax
169 DO i=iMin,iMax
170 df(i,j) = df(i,j) + xA(i,j)*
171 & diffK4S*(df4(i,j)-df4(i-1,j))*_recip_dxC(i,j,bi,bj)
172 ENDDO
173 ENDDO
174 ENDIF
175 C Net zonal flux
176 DO j=jMin,jMax
177 DO i=iMin,iMax
178 fZon(i,j) = afFacS*af(i,j) + dfFacS*df(i,j)
179 ENDDO
180 ENDDO
181
182 C-- Meridional flux (fMer is at south face of "salt" cell)
183 C Advective component of meridional flux
184 DO j=jMin,jMax
185 DO i=iMin,iMax
186 C Advective component of meridional flux
187 af(i,j) =
188 & vTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i,j-1,k,bi,bj))*0.5 _d 0
189 ENDDO
190 ENDDO
191 C Diffusive component of meridional flux
192 DO j=jMin,jMax
193 DO i=iMin,iMax
194 df(i,j) = -(diffKhS+0.5*(KapGM(i,j)+KapGM(i,j-1)))*
195 & yA(i,j)*dSdy(i,j)
196 ENDDO
197 ENDDO
198 C o Add the bi-harmonic contribution
199 IF (diffK4S .NE. 0.) THEN
200 DO j=jMin,jMax
201 DO i=iMin,iMax
202 df(i,j) = df(i,j) + yA(i,j)*
203 & diffK4S*(df4(i,j)-df4(i,j-1))*_recip_dyC(i,j,bi,bj)
204 ENDDO
205 ENDDO
206 ENDIF
207
208 C Net meridional flux
209 DO j=jMin,jMax
210 DO i=iMin,iMax
211 fMer(i,j) = afFacS*af(i,j) + dfFacS*df(i,j)
212 ENDDO
213 ENDDO
214
215 C-- Interpolate terms for Redi/GM scheme
216 DO j=jMin,jMax
217 DO i=iMin,iMax
218 dSdx(i,j) = 0.5*(
219 & +0.5*(_maskW(i+1,j,k,bi,bj)
220 & *_recip_dxC(i+1,j,bi,bj)*
221 & (salt(i+1,j,k,bi,bj)-salt(i,j,k,bi,bj))
222 & +_maskW(i,j,k,bi,bj)
223 & *_recip_dxC(i,j,bi,bj)*
224 & (salt(i,j,k,bi,bj)-salt(i-1,j,k,bi,bj)))
225 & +0.5*(_maskW(i+1,j,km1,bi,bj)
226 & *_recip_dxC(i+1,j,bi,bj)*
227 & (salt(i+1,j,km1,bi,bj)-salt(i,j,km1,bi,bj))
228 & +_maskW(i,j,km1,bi,bj)
229 & *_recip_dxC(i,j,bi,bj)*
230 & (salt(i,j,km1,bi,bj)-salt(i-1,j,km1,bi,bj)))
231 & )
232 ENDDO
233 ENDDO
234 DO j=jMin,jMax
235 DO i=iMin,iMax
236 dSdy(i,j) = 0.5*(
237 & +0.5*(_maskS(i,j,k,bi,bj)
238 & *_recip_dyC(i,j,bi,bj)*
239 & (salt(i,j,k,bi,bj)-salt(i,j-1,k,bi,bj))
240 & +_maskS(i,j+1,k,bi,bj)
241 & *_recip_dyC(i,j+1,bi,bj)*
242 & (salt(i,j+1,k,bi,bj)-salt(i,j,k,bi,bj)))
243 & +0.5*(_maskS(i,j,km1,bi,bj)
244 & *_recip_dyC(i,j,bi,bj)*
245 & (salt(i,j,km1,bi,bj)-salt(i,j-1,km1,bi,bj))
246 & +_maskS(i,j+1,km1,bi,bj)
247 & *_recip_dyC(i,j+1,bi,bj)*
248 & (salt(i,j+1,km1,bi,bj)-salt(i,j,km1,bi,bj)))
249 & )
250 ENDDO
251 ENDDO
252
253 C-- Vertical flux (fVerS) above
254 C Advective component of vertical flux
255 C Note: For K=1 then KM1=1 this gives a barZ(T) = T
256 C (this plays the role of the free-surface correction)
257 DO j=jMin,jMax
258 DO i=iMin,iMax
259 af(i,j) =
260 & rTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i,j,kM1,bi,bj))*0.5 _d 0
261 ENDDO
262 ENDDO
263 C Diffusive component of vertical flux
264 C Note: For K=1 then KM1=1 this gives a dS/dz = 0 upper
265 C boundary condition.
266 DO j=jMin,jMax
267 DO i=iMin,iMax
268 df(i,j) = _rA(i,j,bi,bj)*(
269 & -KapGM(i,j)*K13(i,j,k)*dSdx(i,j)
270 & -KapGM(i,j)*K23(i,j,k)*dSdy(i,j)
271 & )
272 ENDDO
273 ENDDO
274 IF (.NOT.implicitDiffusion) THEN
275 DO j=jMin,jMax
276 DO i=iMin,iMax
277 df(i,j) = df(i,j) + _rA(i,j,bi,bj)*(
278 & -KappaRS(i,j,k)*recip_drC(k)
279 & *(salt(i,j,kM1,bi,bj)-salt(i,j,k,bi,bj))*rkFac
280 & )
281 ENDDO
282 ENDDO
283 ENDIF
284 #ifdef ALLOW_KPP
285 IF (usingKPPmixing) THEN
286 C-- Add non local transport coefficient (ghat term) to right-hand-side
287 C The nonlocal transport term is noNrero only for scalars in unstable
288 C (convective) forcing conditions.
289 IF ( TOP_LAYER ) THEN
290 DO j=jMin,jMax
291 DO i=iMin,iMax
292 df(i,j) = df(i,j) - _rA(i,j,bi,bj) *
293 & EmPmR(i,j,bi,bj) * delZ(1) *
294 & ( KappaRS(i,j,k) * KPPghat(i,j,k,bi,bj) )
295 ENDDO
296 ENDDO
297 ELSE
298 DO j=jMin,jMax
299 DO i=iMin,iMax
300 df(i,j) = df(i,j) - _rA(i,j,bi,bj) *
301 & EmPmR(i,j,bi,bj) * delZ(1) *
302 & ( KappaRS(i,j,k) * KPPghat(i,j,k,bi,bj)
303 & - KappaRS(i,j,k-1) * KPPghat(i,j,k-1,bi,bj) )
304 ENDDO
305 ENDDO
306 ENDIF
307 ENDIF
308 #endif /* ALLOW_KPP */
309
310 C Net vertical flux
311 DO j=jMin,jMax
312 DO i=iMin,iMax
313 fVerS(i,j,kUp) = ( afFacS*af(i,j)+ dfFacS*df(i,j) )*maskUp(i,j)
314 ENDDO
315 ENDDO
316 IF ( TOP_LAYER ) THEN
317 DO j=jMin,jMax
318 DO i=iMin,iMax
319 fVerS(i,j,kUp) = afFacS*af(i,j)*freeSurfFac
320 ENDDO
321 ENDDO
322 ENDIF
323
324 C-- Tendency is minus divergence of the fluxes.
325 C Note. Tendency terms will only be correct for range
326 C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points
327 C will contain valid floating point numbers but
328 C they are not algorithmically correct. These points
329 C are not used.
330 DO j=jMin,jMax
331 DO i=iMin,iMax
332 #define _recip_VolS1(i,j,k,bi,bj) _recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
333 #define _recip_VolS2(i,j,k,bi,bj) /_rA(i,j,bi,bj)
334 gS(i,j,k,bi,bj)=
335 & -_recip_VolS1(i,j,k,bi,bj)
336 & _recip_VolS2(i,j,k,bi,bj)
337 & *(
338 & +( fZon(i+1,j)-fZon(i,j) )
339 & +( fMer(i,j+1)-fMer(i,j) )
340 & +( fVerS(i,j,kUp)-fVerS(i,j,kDown) )*rkFac
341 & )
342 ENDDO
343 ENDDO
344
345 C-- External forcing term(s)
346 CALL EXTERNAL_FORCING_S(
347 I iMin,iMax,jMin,jMax,bi,bj,k,
348 I maskC,
349 I myCurrentTime,myThid)
350
351 #ifdef INCLUDE_LAT_CIRC_FFT_FILTER_CODE
352 C--
353 CALL FILTER_LATCIRCS_FFT_APPLY( gS, 1, sNy, k, k, bi, bj, 1, myThid)
354 #endif
355
356 RETURN
357 END

  ViewVC Help
Powered by ViewVC 1.1.22