/[MITgcm]/MITgcm/model/src/calc_gs.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_gs.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.9 - (hide annotations) (download)
Wed Jun 17 21:07:01 1998 UTC (25 years, 11 months ago) by adcroft
Branch: MAIN
Changes since 1.8: +4 -2 lines
Introduced time-dependant forcing, loaded and interpolated in
load_external_fields.F in a subroutine load_interpolate_forcing().
Control is by one logical and two real variables in PARAMS.h:
periodicExternalForcing, externForcingCycle and externForcingPeriod.
The code in load_external_fields.F is "customized" so needs to
be edited for non-global type runs. We'll tidy it up later.

1 adcroft 1.9 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_gs.F,v 1.8 1998/06/15 05:13:55 cnh Exp $
2 cnh 1.1
3     #include "CPP_EEOPTIONS.h"
4    
5     CStartOfInterFace
6     SUBROUTINE CALC_GS(
7     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
8     I xA,yA,uTrans,vTrans,wTrans,maskup,
9 adcroft 1.7 I K13,K23,KappaZS,KapGM,
10     U af,df,fZon,fMer,fVerS,
11 cnh 1.1 I myThid )
12     C /==========================================================\
13     C | SUBROUTINE CALC_GS |
14 adcroft 1.7 C | o Calculate the salt tendency terms. |
15 cnh 1.1 C |==========================================================|
16     C | A procedure called EXTERNAL_FORCING_S is called from |
17     C | here. These procedures can be used to add per problem |
18 adcroft 1.7 C | E-P flux source terms. |
19 cnh 1.1 C | Note: Although it is slightly counter-intuitive the |
20     C | EXTERNAL_FORCING routine is not the place to put |
21     C | file I/O. Instead files that are required to |
22     C | calculate the external source terms are generally |
23     C | read during the model main loop. This makes the |
24     C | logisitics of multi-processing simpler and also |
25     C | makes the adjoint generation simpler. It also |
26     C | allows for I/O to overlap computation where that |
27     C | is supported by hardware. |
28     C | Aside from the problem specific term the code here |
29     C | forms the tendency terms due to advection and mixing |
30     C | The baseline implementation here uses a centered |
31     C | difference form for the advection term and a tensorial |
32     C | divergence of a flux form for the diffusive term. The |
33     C | diffusive term is formulated so that isopycnal mixing and|
34     C | GM-style subgrid-scale terms can be incorporated b simply|
35     C | setting the diffusion tensor terms appropriately. |
36     C \==========================================================/
37     IMPLICIT NONE
38    
39     C == GLobal variables ==
40     #include "SIZE.h"
41     #include "DYNVARS.h"
42     #include "EEPARAMS.h"
43     #include "PARAMS.h"
44     #include "GRID.h"
45 cnh 1.8 #include "FFIELDS.h"
46 cnh 1.1
47     C == Routine arguments ==
48     C fZon - Work array for flux of temperature in the east-west
49     C direction at the west face of a cell.
50     C fMer - Work array for flux of temperature in the north-south
51     C direction at the south face of a cell.
52 adcroft 1.7 C fVerS - Flux of salt (S) in the vertical
53 cnh 1.1 C direction at the upper(U) and lower(D) faces of a cell.
54     C maskUp - Land mask used to denote base of the domain.
55     C xA - Tracer cell face area normal to X
56     C yA - Tracer cell face area normal to X
57     C uTrans - Zonal volume transport through cell face
58     C vTrans - Meridional volume transport through cell face
59     C wTrans - Vertical volume transport through cell face
60     C af - Advective flux component work array
61     C df - Diffusive flux component work array
62     C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
63     C results will be set.
64 adcroft 1.7 C myThid - Instance number for this innvocation of CALC_GT
65 cnh 1.1 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
66     _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67     _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
68     _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69     _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72     _RL wTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73     _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 adcroft 1.7 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
75     _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
76     _RL KappaZS(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nz)
77     _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
78 cnh 1.1 _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
79     _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 adcroft 1.7 INTEGER k,kUp,kDown,kM1
81 cnh 1.1 INTEGER bi,bj,iMin,iMax,jMin,jMax
82     INTEGER myThid
83     CEndOfInterface
84    
85     C == Local variables ==
86     C I, J, K - Loop counters
87 adcroft 1.7 INTEGER i,j
88     LOGICAL TOP_LAYER
89     _RL afFacS, dfFacS
90     _RL dSdx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
91     _RL dSdy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
92 cnh 1.1
93     afFacS = 1. _d 0
94     dfFacS = 1. _d 0
95 adcroft 1.7 TOP_LAYER = K .EQ. 1
96 cnh 1.1
97     C--- Calculate advective and diffusive fluxes between cells.
98    
99     C-- Zonal flux (fZon is at west face of "salt" cell)
100     C Advective component of zonal flux
101     DO j=jMin,jMax
102     DO i=iMin,iMax
103     af(i,j) =
104     & uTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i-1,j,k,bi,bj))*0.5 _d 0
105     ENDDO
106     ENDDO
107 adcroft 1.7 C Zonal tracer gradient
108     DO j=jMin,jMax
109     DO i=iMin,iMax
110     dSdx(i,j) = _rdxC(i,j,bi,bj)*
111     & (salt(i,j,k,bi,bj)-salt(i-1,j,k,bi,bj))
112     ENDDO
113     ENDDO
114 cnh 1.1 C Diffusive component of zonal flux
115     DO j=jMin,jMax
116     DO i=iMin,iMax
117 adcroft 1.7 df(i,j) = -(diffKhS+0.5*(KapGM(i,j)+KapGM(i-1,j)))*
118     & xA(i,j)*dSdx(i,j)
119 cnh 1.1 ENDDO
120     ENDDO
121     C Net zonal flux
122     DO j=jMin,jMax
123     DO i=iMin,iMax
124     fZon(i,j) = afFacS*af(i,j) + dfFacS*df(i,j)
125     ENDDO
126     ENDDO
127    
128     C-- Meridional flux (fMer is at south face of "salt" cell)
129     C Advective component of meridional flux
130     DO j=jMin,jMax
131     DO i=iMin,iMax
132     C Advective component of meridional flux
133     af(i,j) =
134     & vTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i,j-1,k,bi,bj))*0.5 _d 0
135     ENDDO
136     ENDDO
137 adcroft 1.7 C Zonal tracer gradient
138     DO j=jMin,jMax
139     DO i=iMin,iMax
140     dSdy(i,j) = _rdyC(i,j,bi,bj)*
141     & (salt(i,j,k,bi,bj)-salt(i,j-1,k,bi,bj))
142     ENDDO
143     ENDDO
144 cnh 1.1 C Diffusive component of meridional flux
145     DO j=jMin,jMax
146     DO i=iMin,iMax
147 adcroft 1.7 df(i,j) = -(diffKhS+0.5*(KapGM(i,j)+KapGM(i,j-1)))*
148     & yA(i,j)*dSdy(i,j)
149 cnh 1.1 ENDDO
150     ENDDO
151     C Net meridional flux
152     DO j=jMin,jMax
153     DO i=iMin,iMax
154     fMer(i,j) = afFacS*af(i,j) + dfFacS*df(i,j)
155     ENDDO
156     ENDDO
157    
158 adcroft 1.7 C-- Interpolate terms for Redi/GM scheme
159     DO j=jMin,jMax
160     DO i=iMin,iMax
161     dSdx(i,j) = 0.5*(
162     & +0.5*(_maskW(i+1,j,k,bi,bj)*_rdxC(i+1,j,bi,bj)*
163     & (salt(i+1,j,k,bi,bj)-salt(i,j,k,bi,bj))
164     & +_maskW(i,j,k,bi,bj)*_rdxC(i,j,bi,bj)*
165     & (salt(i,j,k,bi,bj)-salt(i-1,j,k,bi,bj)))
166     & +0.5*(_maskW(i+1,j,km1,bi,bj)*_rdxC(i+1,j,bi,bj)*
167     & (salt(i+1,j,km1,bi,bj)-salt(i,j,km1,bi,bj))
168     & +_maskW(i,j,km1,bi,bj)*_rdxC(i,j,bi,bj)*
169     & (salt(i,j,km1,bi,bj)-salt(i-1,j,km1,bi,bj)))
170     & )
171     ENDDO
172     ENDDO
173     DO j=jMin,jMax
174     DO i=iMin,iMax
175     dSdy(i,j) = 0.5*(
176     & +0.5*(_maskS(i,j,k,bi,bj)*_rdyC(i,j,bi,bj)*
177     & (salt(i,j,k,bi,bj)-salt(i,j-1,k,bi,bj))
178     & +_maskS(i,j+1,k,bi,bj)*_rdyC(i,j+1,bi,bj)*
179     & (salt(i,j+1,k,bi,bj)-salt(i,j,k,bi,bj)))
180     & +0.5*(_maskS(i,j,km1,bi,bj)*_rdyC(i,j,bi,bj)*
181     & (salt(i,j,km1,bi,bj)-salt(i,j-1,km1,bi,bj))
182     & +_maskS(i,j+1,km1,bi,bj)*_rdyC(i,j+1,bi,bj)*
183     & (salt(i,j+1,km1,bi,bj)-salt(i,j,km1,bi,bj)))
184     & )
185     ENDDO
186     ENDDO
187    
188 cnh 1.1 C-- Vertical flux (fVerS) above
189     C Advective component of vertical flux
190 adcroft 1.7 C Note: For K=1 then KM1=1 this gives a barZ(T) = T
191     C (this plays the role of the free-surface correction)
192 cnh 1.1 DO j=jMin,jMax
193     DO i=iMin,iMax
194     af(i,j) =
195     & wTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i,j,kM1,bi,bj))*0.5 _d 0
196     ENDDO
197     ENDDO
198     C Diffusive component of vertical flux
199 adcroft 1.7 C Note: For K=1 then KM1=1 this gives a dS/dz = 0 upper
200     C boundary condition.
201 cnh 1.1 DO j=jMin,jMax
202     DO i=iMin,iMax
203 adcroft 1.7 df(i,j) = _zA(i,j,bi,bj)*(
204     & -KapGM(i,j)*K13(i,j,k)*dSdx(i,j)
205     & -KapGM(i,j)*K23(i,j,k)*dSdy(i,j)
206     & )
207 cnh 1.1 ENDDO
208     ENDDO
209 adcroft 1.7 IF (.NOT.implicitDiffusion) THEN
210     DO j=jMin,jMax
211     DO i=iMin,iMax
212     df(i,j) = df(i,j) + _zA(i,j,bi,bj)*(
213     & -KappaZS(i,j,k)*rdzC(k)
214     & *(salt(i,j,kM1,bi,bj)-salt(i,j,k,bi,bj))
215     & )
216     ENDDO
217     ENDDO
218     ENDIF
219 cnh 1.1 C Net vertical flux
220     DO j=jMin,jMax
221     DO i=iMin,iMax
222 adcroft 1.7 fVerS(i,j,kUp) = ( afFacS*af(i,j)+ dfFacS*df(i,j) )*maskUp(i,j)
223 cnh 1.1 ENDDO
224     ENDDO
225 adcroft 1.7 IF ( TOP_LAYER ) THEN
226     DO j=jMin,jMax
227     DO i=iMin,iMax
228     fVerS(i,j,kUp) = afFacS*af(i,j)*freeSurfFac
229     ENDDO
230     ENDDO
231     ENDIF
232 cnh 1.1
233     C-- Tendency is minus divergence of the fluxes.
234     C Note. Tendency terms will only be correct for range
235     C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points
236     C will contain valid floating point numbers but
237     C they are not algorithmically correct. These points
238     C are not used.
239     DO j=jMin,jMax
240     DO i=iMin,iMax
241 adcroft 1.7 C & -_rhFacC(i,j,k,bi,bj)*rdzF(k)*_rdxF(i,j,bi,bj)*_rdyF(i,j,bi,bj)
242     C & -_rhFacC(i,j,k,bi,bj)*rdzF(k)/_zA(i,j,bi,bj)
243     C #define _rVolS(i,j,k,bi,bj) _rhFacC(i,j,k,bi,bj)*rdzF(k)*_rdxF(i,j,bi,bj)*_rdyF(i,j,bi,bj)
244     #define _rVolS(i,j,k,bi,bj) _rhFacC(i,j,k,bi,bj)*rdzF(k)/_zA(i,j,bi,bj)
245 cnh 1.1 gS(i,j,k,bi,bj)=
246 adcroft 1.7 & -_rVolS(i,j,k,bi,bj)
247 cnh 1.1 & *(
248     & +( fZon(i+1,j)-fZon(i,j) )
249     & +( fMer(i,j+1)-fMer(i,j) )
250     & +( fVerS(i,j,kUp)-fVerS(i,j,kDown) )
251     & )
252     ENDDO
253     ENDDO
254    
255 adcroft 1.7 C-- External P-E forcing term(s)
256 cnh 1.8 C o Surface relaxation term
257     IF ( TOP_LAYER ) THEN
258     DO j=jMin,jMax
259     DO i=iMin,iMax
260     gS(i,j,k,bi,bj)=gS(i,j,k,bi,bj)
261 adcroft 1.9 & +maskUp(i,j)*(
262     & -lambdaSaltClimRelax*(salt(i,j,k,bi,bj)-SSS(i,j,bi,bj))
263     & -EmPpR(i,j,bi,bj) )
264 cnh 1.8 ENDDO
265     ENDDO
266     ENDIF
267    
268 cnh 1.1
269     RETURN
270     END

  ViewVC Help
Powered by ViewVC 1.1.22