/[MITgcm]/MITgcm/model/src/calc_gs.F
ViewVC logotype

Annotation of /MITgcm/model/src/calc_gs.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.16 - (hide annotations) (download)
Tue Nov 3 15:28:04 1998 UTC (25 years, 6 months ago) by cnh
Branch: MAIN
CVS Tags: checkpoint17
Changes since 1.15: +22 -14 lines
Partial changes to incoporate atmospheric configuration
Minor TAMC compliance changes
Included one-layer verification experiment exp0

1 cnh 1.16 C $Header: /u/gcmpack/models/MITgcmUV/model/src/calc_gs.F,v 1.15 1998/10/28 03:11:36 cnh Exp $
2 cnh 1.1
3     #include "CPP_EEOPTIONS.h"
4    
5     CStartOfInterFace
6     SUBROUTINE CALC_GS(
7     I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown,
8 cnh 1.12 I xA,yA,uTrans,vTrans,rTrans,maskup,maskC,
9     I K13,K23,KappaRS,KapGM,
10 adcroft 1.7 U af,df,fZon,fMer,fVerS,
11 cnh 1.16 I myCurrentTime, myThid )
12 cnh 1.1 C /==========================================================\
13     C | SUBROUTINE CALC_GS |
14 adcroft 1.7 C | o Calculate the salt tendency terms. |
15 cnh 1.1 C |==========================================================|
16     C | A procedure called EXTERNAL_FORCING_S is called from |
17     C | here. These procedures can be used to add per problem |
18 adcroft 1.7 C | E-P flux source terms. |
19 cnh 1.1 C | Note: Although it is slightly counter-intuitive the |
20     C | EXTERNAL_FORCING routine is not the place to put |
21     C | file I/O. Instead files that are required to |
22     C | calculate the external source terms are generally |
23     C | read during the model main loop. This makes the |
24     C | logisitics of multi-processing simpler and also |
25     C | makes the adjoint generation simpler. It also |
26     C | allows for I/O to overlap computation where that |
27     C | is supported by hardware. |
28     C | Aside from the problem specific term the code here |
29     C | forms the tendency terms due to advection and mixing |
30     C | The baseline implementation here uses a centered |
31     C | difference form for the advection term and a tensorial |
32     C | divergence of a flux form for the diffusive term. The |
33     C | diffusive term is formulated so that isopycnal mixing and|
34     C | GM-style subgrid-scale terms can be incorporated b simply|
35     C | setting the diffusion tensor terms appropriately. |
36     C \==========================================================/
37     IMPLICIT NONE
38    
39     C == GLobal variables ==
40     #include "SIZE.h"
41     #include "DYNVARS.h"
42     #include "EEPARAMS.h"
43     #include "PARAMS.h"
44     #include "GRID.h"
45 cnh 1.8 #include "FFIELDS.h"
46 cnh 1.1
47     C == Routine arguments ==
48     C fZon - Work array for flux of temperature in the east-west
49     C direction at the west face of a cell.
50     C fMer - Work array for flux of temperature in the north-south
51     C direction at the south face of a cell.
52 adcroft 1.7 C fVerS - Flux of salt (S) in the vertical
53 cnh 1.1 C direction at the upper(U) and lower(D) faces of a cell.
54     C maskUp - Land mask used to denote base of the domain.
55 adcroft 1.10 C maskC - Land mask for salt cells (used in TOP_LAYER only)
56 cnh 1.1 C xA - Tracer cell face area normal to X
57     C yA - Tracer cell face area normal to X
58     C uTrans - Zonal volume transport through cell face
59     C vTrans - Meridional volume transport through cell face
60     C wTrans - Vertical volume transport through cell face
61     C af - Advective flux component work array
62     C df - Diffusive flux component work array
63     C bi, bj, iMin, iMax, jMin, jMax - Range of points for which calculation
64     C results will be set.
65 adcroft 1.7 C myThid - Instance number for this innvocation of CALC_GT
66 cnh 1.1 _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67     _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68     _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
69     _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70     _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71     _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
72     _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 cnh 1.12 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
74 cnh 1.1 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
75 adcroft 1.10 _RS maskC (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 cnh 1.14 _RL K13 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
77     _RL K23 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
78     _RL KappaRS(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
79 adcroft 1.7 _RL KapGM (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
80 cnh 1.1 _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
81     _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
82 adcroft 1.7 INTEGER k,kUp,kDown,kM1
83 cnh 1.1 INTEGER bi,bj,iMin,iMax,jMin,jMax
84     INTEGER myThid
85 cnh 1.16 _RL myCurrentTime
86 cnh 1.1 CEndOfInterface
87    
88     C == Local variables ==
89     C I, J, K - Loop counters
90 adcroft 1.7 INTEGER i,j
91     LOGICAL TOP_LAYER
92     _RL afFacS, dfFacS
93     _RL dSdx(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
94     _RL dSdy(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
95 cnh 1.1
96     afFacS = 1. _d 0
97     dfFacS = 1. _d 0
98 adcroft 1.7 TOP_LAYER = K .EQ. 1
99 cnh 1.1
100     C--- Calculate advective and diffusive fluxes between cells.
101    
102     C-- Zonal flux (fZon is at west face of "salt" cell)
103     C Advective component of zonal flux
104     DO j=jMin,jMax
105     DO i=iMin,iMax
106     af(i,j) =
107     & uTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i-1,j,k,bi,bj))*0.5 _d 0
108     ENDDO
109     ENDDO
110 adcroft 1.7 C Zonal tracer gradient
111     DO j=jMin,jMax
112     DO i=iMin,iMax
113 cnh 1.12 dSdx(i,j) = _recip_dxC(i,j,bi,bj)*
114 adcroft 1.7 & (salt(i,j,k,bi,bj)-salt(i-1,j,k,bi,bj))
115     ENDDO
116     ENDDO
117 cnh 1.1 C Diffusive component of zonal flux
118     DO j=jMin,jMax
119     DO i=iMin,iMax
120 adcroft 1.7 df(i,j) = -(diffKhS+0.5*(KapGM(i,j)+KapGM(i-1,j)))*
121     & xA(i,j)*dSdx(i,j)
122 cnh 1.1 ENDDO
123     ENDDO
124     C Net zonal flux
125     DO j=jMin,jMax
126     DO i=iMin,iMax
127     fZon(i,j) = afFacS*af(i,j) + dfFacS*df(i,j)
128     ENDDO
129     ENDDO
130    
131     C-- Meridional flux (fMer is at south face of "salt" cell)
132     C Advective component of meridional flux
133     DO j=jMin,jMax
134     DO i=iMin,iMax
135     C Advective component of meridional flux
136     af(i,j) =
137     & vTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i,j-1,k,bi,bj))*0.5 _d 0
138     ENDDO
139     ENDDO
140 adcroft 1.7 C Zonal tracer gradient
141     DO j=jMin,jMax
142     DO i=iMin,iMax
143 cnh 1.12 dSdy(i,j) = _recip_dyC(i,j,bi,bj)*
144 adcroft 1.7 & (salt(i,j,k,bi,bj)-salt(i,j-1,k,bi,bj))
145     ENDDO
146     ENDDO
147 cnh 1.1 C Diffusive component of meridional flux
148     DO j=jMin,jMax
149     DO i=iMin,iMax
150 adcroft 1.7 df(i,j) = -(diffKhS+0.5*(KapGM(i,j)+KapGM(i,j-1)))*
151     & yA(i,j)*dSdy(i,j)
152 cnh 1.1 ENDDO
153     ENDDO
154     C Net meridional flux
155     DO j=jMin,jMax
156     DO i=iMin,iMax
157     fMer(i,j) = afFacS*af(i,j) + dfFacS*df(i,j)
158     ENDDO
159     ENDDO
160    
161 adcroft 1.7 C-- Interpolate terms for Redi/GM scheme
162     DO j=jMin,jMax
163     DO i=iMin,iMax
164     dSdx(i,j) = 0.5*(
165 cnh 1.15 & +0.5*(_maskW(i+1,j,k,bi,bj)
166     & *_recip_dxC(i+1,j,bi,bj)*
167 adcroft 1.7 & (salt(i+1,j,k,bi,bj)-salt(i,j,k,bi,bj))
168 cnh 1.15 & +_maskW(i,j,k,bi,bj)
169     & *_recip_dxC(i,j,bi,bj)*
170 adcroft 1.7 & (salt(i,j,k,bi,bj)-salt(i-1,j,k,bi,bj)))
171 cnh 1.15 & +0.5*(_maskW(i+1,j,km1,bi,bj)
172     & *_recip_dxC(i+1,j,bi,bj)*
173 adcroft 1.7 & (salt(i+1,j,km1,bi,bj)-salt(i,j,km1,bi,bj))
174 cnh 1.15 & +_maskW(i,j,km1,bi,bj)
175     & *_recip_dxC(i,j,bi,bj)*
176 adcroft 1.7 & (salt(i,j,km1,bi,bj)-salt(i-1,j,km1,bi,bj)))
177     & )
178     ENDDO
179     ENDDO
180     DO j=jMin,jMax
181     DO i=iMin,iMax
182     dSdy(i,j) = 0.5*(
183 cnh 1.15 & +0.5*(_maskS(i,j,k,bi,bj)
184     & *_recip_dyC(i,j,bi,bj)*
185 adcroft 1.7 & (salt(i,j,k,bi,bj)-salt(i,j-1,k,bi,bj))
186 cnh 1.15 & +_maskS(i,j+1,k,bi,bj)
187     & *_recip_dyC(i,j+1,bi,bj)*
188 adcroft 1.7 & (salt(i,j+1,k,bi,bj)-salt(i,j,k,bi,bj)))
189 cnh 1.15 & +0.5*(_maskS(i,j,km1,bi,bj)
190     & *_recip_dyC(i,j,bi,bj)*
191 adcroft 1.7 & (salt(i,j,km1,bi,bj)-salt(i,j-1,km1,bi,bj))
192 cnh 1.15 & +_maskS(i,j+1,km1,bi,bj)
193     & *_recip_dyC(i,j+1,bi,bj)*
194 adcroft 1.7 & (salt(i,j+1,km1,bi,bj)-salt(i,j,km1,bi,bj)))
195     & )
196     ENDDO
197     ENDDO
198    
199 cnh 1.1 C-- Vertical flux (fVerS) above
200     C Advective component of vertical flux
201 adcroft 1.7 C Note: For K=1 then KM1=1 this gives a barZ(T) = T
202     C (this plays the role of the free-surface correction)
203 cnh 1.1 DO j=jMin,jMax
204     DO i=iMin,iMax
205     af(i,j) =
206 cnh 1.12 & rTrans(i,j)*(salt(i,j,k,bi,bj)+salt(i,j,kM1,bi,bj))*0.5 _d 0
207 cnh 1.1 ENDDO
208     ENDDO
209     C Diffusive component of vertical flux
210 adcroft 1.7 C Note: For K=1 then KM1=1 this gives a dS/dz = 0 upper
211     C boundary condition.
212 cnh 1.1 DO j=jMin,jMax
213     DO i=iMin,iMax
214 cnh 1.13 df(i,j) = _rA(i,j,bi,bj)*(
215 adcroft 1.7 & -KapGM(i,j)*K13(i,j,k)*dSdx(i,j)
216     & -KapGM(i,j)*K23(i,j,k)*dSdy(i,j)
217     & )
218 cnh 1.1 ENDDO
219     ENDDO
220 adcroft 1.7 IF (.NOT.implicitDiffusion) THEN
221     DO j=jMin,jMax
222     DO i=iMin,iMax
223 cnh 1.12 df(i,j) = df(i,j) + _rA(i,j,bi,bj)*(
224     & -KappaRS(i,j,k)*recip_drC(k)
225 cnh 1.13 & *(salt(i,j,kM1,bi,bj)-salt(i,j,k,bi,bj))*rkFac
226 adcroft 1.7 & )
227     ENDDO
228     ENDDO
229     ENDIF
230 cnh 1.1 C Net vertical flux
231     DO j=jMin,jMax
232     DO i=iMin,iMax
233 adcroft 1.7 fVerS(i,j,kUp) = ( afFacS*af(i,j)+ dfFacS*df(i,j) )*maskUp(i,j)
234 cnh 1.1 ENDDO
235     ENDDO
236 adcroft 1.7 IF ( TOP_LAYER ) THEN
237     DO j=jMin,jMax
238     DO i=iMin,iMax
239     fVerS(i,j,kUp) = afFacS*af(i,j)*freeSurfFac
240     ENDDO
241     ENDDO
242     ENDIF
243 cnh 1.1
244     C-- Tendency is minus divergence of the fluxes.
245     C Note. Tendency terms will only be correct for range
246     C i=iMin+1:iMax-1, j=jMin+1:jMax-1. Edge points
247     C will contain valid floating point numbers but
248     C they are not algorithmically correct. These points
249     C are not used.
250     DO j=jMin,jMax
251     DO i=iMin,iMax
252 cnh 1.15 #define _recip_VolS1(i,j,k,bi,bj) _recip_hFacC(i,j,k,bi,bj)*recip_drF(k)
253     #define _recip_VolS2(i,j,k,bi,bj) /_rA(i,j,bi,bj)
254 cnh 1.1 gS(i,j,k,bi,bj)=
255 cnh 1.15 & -_recip_VolS1(i,j,k,bi,bj)
256     & _recip_VolS2(i,j,k,bi,bj)
257 cnh 1.1 & *(
258     & +( fZon(i+1,j)-fZon(i,j) )
259     & +( fMer(i,j+1)-fMer(i,j) )
260 cnh 1.12 & +( fVerS(i,j,kUp)-fVerS(i,j,kDown) )*rkFac
261 cnh 1.1 & )
262     ENDDO
263     ENDDO
264    
265 cnh 1.16 C-- External forcing term(s)
266     CALL EXTERNAL_FORCING_S(
267     I iMin,iMax,jMin,jMax,bi,bj,k,
268     I myCurrentTime,myThid)
269 cnh 1.8 C o Surface relaxation term
270 cnh 1.16 C IF ( TOP_LAYER ) THEN
271     C DO j=jMin,jMax
272     C DO i=iMin,iMax
273     C gS(i,j,k,bi,bj)=gS(i,j,k,bi,bj)
274     C & +maskC(i,j)*(
275     C & -lambdaSaltClimRelax*(salt(i,j,k,bi,bj)-SSS(i,j,bi,bj))
276     C & +EmPmR(i,j,bi,bj) )
277     C ENDDO
278     C ENDDO
279     C ENDIF
280    
281     #ifdef ALLOW_LATITUDE_CIRCLE_FFT_FILTER
282     C--
283     CALL FILTER_LATCIRCS_FFT_APPLY( gS, 1, sNy, k, k, bi, bj, 1, myThid)
284     #endif
285 cnh 1.1
286     RETURN
287     END

  ViewVC Help
Powered by ViewVC 1.1.22