C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/calc_adv_flow.F,v 1.2 2013/11/27 23:58:24 jmc Exp $ C $Name: $ #include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" CBOP C !ROUTINE: CALC_ADV_FLOW C !INTERFACE: SUBROUTINE CALC_ADV_FLOW( I uFld, vFld, wFld, U rTrans, O uTrans, vTrans, rTransKp, O maskUp, xA, yA, I k, bi, bj, myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE CALC_ADV_FLOW C | o Calculate common data (such as volume flux) for use C | by "Right hand side" subroutines. C *==========================================================* C | Here, we calculate terms or spatially varying factors C | that are used at various points in the "RHS" subroutines. C | This reduces the amount of total work, total memory C | and therefore execution time and is generally a good C | idea. C *==========================================================* C \ev C !USES: IMPLICIT NONE C == GLobal variables == #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C uFld :: 3-D local copy of horizontal velocity, zonal component C vFld :: 3-D local copy of horizontal velocity, merid. component C wFld :: 3-D local copy of vertical velocity C rTrans :: Vertical volume transport through interface k C uTrans :: Zonal volume transport through cell face C vTrans :: Meridional volume transport through cell face C rTransKp :: Vertical volume transport through interface k+1 C maskUp :: Land/water mask for Wvel points (interface k) C xA :: Tracer cell face area normal to X C yA :: Tracer cell face area normal to X C k,bi,bj :: vertical & tile indices for this calculation C myThid :: my Thread Id. number _RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL wFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTransKp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER k,bi,bj INTEGER myThid C !LOCAL VARIABLES: C == Local variables == C i, j :: Loop counters INTEGER i,j CEOP C-- Calculate tracer cell face open areas DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx xA(i,j) = _dyG(i,j,bi,bj)*deepFacC(k) & *drF(k)*_hFacW(i,j,k,bi,bj) yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k) & *drF(k)*_hFacS(i,j,k,bi,bj) ENDDO ENDDO C-- copy previous rTrans (input) to output array rTransKp IF ( k.EQ.Nr ) THEN DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx rTransKp(i,j) = 0. _d 0 ENDDO ENDDO ELSE DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx #ifdef ALLOW_AUTODIFF C- Re-compute vertical transport: this changes "rTrans" to be C an output only argument and therefore simplifies dependencies rTransKp(i,j) = wFld(i,j,k+1)*rA(i,j,bi,bj) & * maskC(i,j,k,bi,bj)*maskC(i,j,k+1,bi,bj) & * deepFac2F(k+1)*rhoFacF(k+1) #else /* ALLOW_AUTODIFF */ C- Copy rTrans value from previous call (i.e., k+1): rTransKp(i,j) = rTrans(i,j) #endif /* ALLOW_AUTODIFF */ ENDDO ENDDO ENDIF C-- Calculate "volume transports" through tracer cell faces. C anelastic: scaled by rhoFacC (~ mass transport) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx uTrans(i,j) = uFld(i,j,k)*xA(i,j)*rhoFacC(k) vTrans(i,j) = vFld(i,j,k)*yA(i,j)*rhoFacC(k) ENDDO ENDDO C-- Calculate vertical "volume transport" through tracer cell face IF (k.EQ.1) THEN C- Surface interface : DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx maskUp(i,j) = 0. _d 0 rTrans(i,j) = 0. _d 0 ENDDO ENDDO ELSE C- Interior interface : C anelastic: rTrans is scaled by rhoFacF (~ mass transport) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx maskUp(i,j) = maskC(i,j,k-1,bi,bj)*maskC(i,j,k,bi,bj) rTrans(i,j) = wFld(i,j,k)*rA(i,j,bi,bj)*maskUp(i,j) & *deepFac2F(k)*rhoFacF(k) ENDDO ENDDO ENDIF RETURN END