| 1 |
cnh |
1.5 |
C $Header: /u/gcmpack/models/MITgcmUV/eesupp/src/different_multiple.F,v 1.4 2001/02/04 14:38:42 cnh Exp $ |
| 2 |
|
|
C $Name: $ |
| 3 |
cnh |
1.1 |
#include "CPP_EEOPTIONS.h" |
| 4 |
|
|
|
| 5 |
cnh |
1.5 |
CBOP |
| 6 |
|
|
C !ROUTINE: DIFFERENT_MULTIPLE |
| 7 |
|
|
|
| 8 |
|
|
C !INTERFACE: |
| 9 |
cnh |
1.1 |
LOGICAL FUNCTION DIFFERENT_MULTIPLE( freq, val1, val2 ) |
| 10 |
|
|
IMPLICIT NONE |
| 11 |
cnh |
1.5 |
|
| 12 |
|
|
C !DESCRIPTION: |
| 13 |
|
|
C *==========================================================* |
| 14 |
|
|
C | LOGICAL FUNCTION DIFFERENT_MULTIPLE |
| 15 |
|
|
C | o Checks two numbers multiple of a third number. |
| 16 |
|
|
C *==========================================================* |
| 17 |
|
|
C | This routine is used for diagnostic and other periodic |
| 18 |
|
|
C | operations. It is very sensitive to arithmetic precision. |
| 19 |
|
|
C | For IEEE conforming arithmetic it works well but for |
| 20 |
|
|
C | cases where short cut arithmetic is used it may not work |
| 21 |
|
|
C | as expected. To overcome this issue compile this routine |
| 22 |
|
|
C | separately with no optimisation. |
| 23 |
|
|
C *==========================================================* |
| 24 |
|
|
|
| 25 |
|
|
C !INPUT PARAMETERS: |
| 26 |
|
|
C == Routine arguments == |
| 27 |
|
|
C val1, val2 :: Two times that are checked |
| 28 |
|
|
C freq :: Frequency by which times are divided. |
| 29 |
cnh |
1.2 |
_RL freq, val1, val2 |
| 30 |
cnh |
1.5 |
|
| 31 |
|
|
C !LOCAL VARIABLES: |
| 32 |
|
|
C == Local variables == |
| 33 |
|
|
C f :: Temp. for holding freq |
| 34 |
|
|
C v1, v2, v3, v4 :: Temp. for holding time |
| 35 |
|
|
C d1, d2, d3 :: Temp. for hold difference |
| 36 |
|
|
C step :: Temp. for hold difference used as increment |
| 37 |
cnh |
1.2 |
_RL f, v1, v2, v3, v4, d1, d2, d3, step |
| 38 |
cnh |
1.5 |
CEOP |
| 39 |
cnh |
1.2 |
|
| 40 |
|
|
C o Do easy cases first. |
| 41 |
cnh |
1.1 |
DIFFERENT_MULTIPLE = .FALSE. |
| 42 |
adcroft |
1.3 |
|
| 43 |
|
|
IF ( freq .NE. 0. ) THEN |
| 44 |
|
|
IF ( ABS(val1-val2) .GT. freq ) THEN |
| 45 |
|
|
DIFFERENT_MULTIPLE = .TRUE. |
| 46 |
|
|
ELSE |
| 47 |
|
|
|
| 48 |
|
|
C o This case is more complex because of round-off error |
| 49 |
|
|
f = freq |
| 50 |
|
|
v1 = val1 |
| 51 |
|
|
v2 = val2 |
| 52 |
|
|
step = v1-v2 |
| 53 |
|
|
|
| 54 |
|
|
C Test v1 to see if its a "closest multiple" |
| 55 |
|
|
v3 = v1 + step |
| 56 |
|
|
v4 = NINT(v1/f)*f |
| 57 |
|
|
d1 = v1-v4 |
| 58 |
|
|
d2 = v2-v4 |
| 59 |
|
|
d3 = v3-v4 |
| 60 |
|
|
IF ( ABS(d1) .LE. ABS(d2) .AND. ABS(d1) .LE. ABS(d3) ) |
| 61 |
|
|
& DIFFERENT_MULTIPLE = .TRUE. |
| 62 |
|
|
|
| 63 |
|
|
ENDIF ! |val1-val2| > freq |
| 64 |
|
|
ENDIF ! freq != 0 |
| 65 |
cnh |
1.1 |
|
| 66 |
cnh |
1.2 |
END |