/[MITgcm]/MITgcm/eesupp/inc/CPP_EEOPTIONS.h
ViewVC logotype

Annotation of /MITgcm/eesupp/inc/CPP_EEOPTIONS.h

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download)
Wed Apr 22 19:15:30 1998 UTC (26 years ago) by cnh
Branch: MAIN
Branch point for: cnh
File MIME type: text/plain
Initial revision

1 cnh 1.1 C $Id$
2     C
3     C /==========================================================\
4     C | CPP_EEOPTIONS.h |
5     C |==========================================================|
6     C | C preprocessor "execution environment" supporting |
7     C | flags. Use this file to set flags controlling the |
8     C | execution environment in which a model runs - as opposed |
9     C | to the dynamical problem the model solves. |
10     C | Note: Many options are implemented with both compile time|
11     C | and run-time switches. This allows options to be |
12     C | removed altogether, made optional at run-time or |
13     C | to be permanently enabled. This convention helps |
14     C | with the data-dependence analysis performed by the |
15     C | adjoint model compiler. This data dependency |
16     C | analysis can be upset by runtime switches that it |
17     C | is unable to recoginise as being fixed for the |
18     C | duration of an integration. |
19     C | A reasonable way to use these flags is to |
20     C | set all options as selectable at runtime but then |
21     C | once an experimental configuration has been |
22     C | identified, rebuild the code with the appropriate |
23     C | options set at compile time. |
24     C \==========================================================/
25    
26     C In general the following convention applies:
27     C ALLOW - indicates an feature will be included but it may
28     C CAN have a run-time flag to allow it to be switched
29     C on and off.
30     C If ALLOW or CAN directives are "undef'd" this generally
31     C means that the feature will not be available i.e. it
32     C will not be included in the compiled code and so no
33     C run-time option to use the feature will be available.
34     C
35     C ALWAYS - indicates the choice will be fixed at compile time
36     C so no run-time option will be present
37    
38     C Flag used to indicate whether Fortran formatted write
39     C and read are threadsafe. On SGI the routines can be thread
40     C safe, on Sun it is not possible - if you are unsure then
41     C undef this option.
42     #undef FMTFTN_IO_THREADSAFE
43    
44     C Flag used to indicate which flavour of multi-threading
45     C compiler directives to use. Only set one of these.
46     C USE_SOLARIS_THREADING - Takes directives for SUN Workshop
47     C compiler.
48     C USE_KAP_THREADING - Takes directives for Kuck and
49     C Associates multi-threading compiler
50     C ( used on Digital platforms ).
51     C USE_IRIX_THREADING - Takes directives for SGI MIPS
52     C Pro Fortran compiler.
53     C USE_EXEMPLAR_THREADING - Takes directives for HP SPP series
54     C compiler.
55     C USE_C90_THREADING - Takes directives for CRAY/SGI C90
56     C system F90 compiler.
57     #ifdef TARGET_SUN
58     #define USE_SOLARIS_THREADING
59     #endif
60    
61     #ifdef TARGET_DEC
62     #define USE_KAP_THREADING
63     #endif
64    
65     #ifdef TARGET_SGI
66     #define USE_IRIX_THREADING
67     #endif
68    
69     #ifdef TARGET_HP
70     #define USE_EXEMPLAR_THREADING
71     #endif
72    
73     #ifdef TARGET_CRAY_VECTOR
74     #define USE_C90_THREADING
75     #endif
76    
77     C-- Define the mapping for the _BARRIER macro
78     C On some systems low-level hardware support can be accessed through
79     C compiler directives here.
80     #define _BARRIER CALL BARRIER(myThid)
81    
82     C-- Define the mapping for the BEGIN_CRIT() and END_CRIT() macros.
83     C On some systems we simply execute this section only using the
84     C master thread i.e. its not really a critical section. We can
85     C do this because we don't use critical sections in any critical
86     C sections of our code!
87     #define _BEGIN_CRIT(a) _BEGIN_MASTER(a)
88     #define _END_CRIT(a) _END_MASTER(a)
89    
90     C-- Define the mapping for the BEGIN_MASTER_SECTION() and
91     C END_MASTER_SECTION() macros. These are generally implemented by
92     C simply choosing a particular thread to be "the master" and have
93     C it alone execute the BEGIN_MASTER..., END_MASTER.. sections.
94     #define _BEGIN_MASTER(a) IF ( a .EQ. 1 ) THEN
95     #define _END_MASTER(a) ENDIF
96    
97     C-- Control MPI based parallel processing
98     #undef ALLOW_USE_MPI
99     #undef ALWAYS_USE_MPI
100    
101     C-- Control use of communication that might overlap computation.
102     C Under MPI selects/deselects "non-blocking" sends and receives.
103     #define ALLOW_ASYNC_COMMUNICATION
104     #undef ALLOW_ASYNC_COMMUNICATION
105     #undef ALWAYS_USE_ASYNC_COMMUNICATION
106     C-- Control use of communication that is atomic to computation.
107     C Under MPI selects/deselects "blocking" sends and receives.
108     #define ALLOW_SYNC_COMMUNICATION
109     #undef ALWAYS_USE_SYNC_COMMUNICATION
110    
111     C-- Control storage of floating point operands
112     C On many systems it improves performance only to use
113     C 8-byte precision for time stepped variables.
114     C Constant in time terms ( geometric factors etc.. )
115     C can use 4-byte precision, reducing memory utilisation and
116     C boosting performance because of a smaller working
117     C set size. However, on vector CRAY systems this degrades
118     C performance.
119     #define REAL4_IS_SLOW
120    
121     #ifdef REAL4_IS_SLOW
122     #define real Real*8
123     #define REAL Real*8
124     #define _RS Real*8
125     #define _RL Real*8
126     #define _EXCH_XY_R4(a,b) CALL EXCH_XY_R8 ( a, b )
127     #define _EXCH_XYZ_R4(a,b) CALL EXCH_XYZ_R8 ( a, b )
128     #define _GLOBAL_SUM_R4(a,b,c) CALL GLOBAL_SUM_R8( a, b , c)
129     #define _GLOBAL_MAX_R4(a,b,c) CALL GLOBAL_MAX_R8( a, b , c)
130     #endif
131    
132     #ifndef REAL4_IS_SLOW
133     #define real Real*4
134     #define REAL Real*8
135     #define _RS Real*4
136     #define _RL Real*8
137     #define _EXCH_XY_R4(a,b) CALL EXCH_XY_R4 ( a, b )
138     #define _EXCH_XYZ_R4(a,b) CALL EXCH_XYZ_R4 ( a, b )
139     #define _GLOBAL_SUM_R4(a,b,c) CALL GLOBAL_SUM_R4( a, b , c)
140     #define _GLOBAL_MAX_R4(a,b,c) CALL GLOBAL_MAX_R4( a, b , c)
141     #endif
142    
143     #define _EXCH_XY_R8(a,b) CALL EXCH_XY_R8 ( a, b )
144     #define _EXCH_XYZ_R8(a,b) CALL EXCH_XYZ_R8 ( a, b )
145     #define _GLOBAL_SUM_R8(a,b,c) CALL GLOBAL_SUM_R8( a, b , c)
146     #define _GLOBAL_MAX_R8(a,b,c) CALL GLOBAL_MAX_R8( a, b , c)
147    
148     C-- Control use of "double" precision constants.
149     C Use D0 where it means REAL*8 but not where it means REAL*16
150     #define D0 d0
151     #ifdef REAL_D0_IS_16BYTES
152     #define D0
153     #endif
154    
155     C-- Control XY periodicity in processor to grid mappings
156     C Note: Model code does not need to know whether a domain is
157     C periodic because it has overlap regions for every box.
158     C Model's simply assume that these values have been
159     C filled in some way.
160     #undef ALWAYS_PREVENT_X_PERIODICITY
161     #undef ALWAYS_PREVENT_Y_PERIODICITY
162     #define CAN_PREVENT_X_PERIODICITY
163     #define CAN_PREVENT_Y_PERIODICITY
164    
165     C-- Substitue for 1.D variables
166     C Sun compilers don't use 8-byte precision for literals
167     C unless .Dnn is specified. CRAY vector machines use 16-byte
168     C precision when they see .Dnn which runs very slowly!
169     #ifdef REAL_D0_IS_16BYTES
170     #define _d
171     #endif
172     #ifndef REAL_D0_IS_16BYTES
173     #define _d D
174     #endif

  ViewVC Help
Powered by ViewVC 1.1.22