C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/eesupp/inc/CPP_EEMACROS.h,v 1.26 2017/09/13 22:12:35 jmc Exp $ C $Name: $ CBOP C !ROUTINE: CPP_EEMACROS.h C !INTERFACE: C include "CPP_EEMACROS.h" C !DESCRIPTION: C *==========================================================* C | CPP_EEMACROS.h C *==========================================================* C | C preprocessor "execution environment" supporting C | macros. Use this file to define macros for simplifying C | execution environment in which a model runs - as opposed C | to the dynamical problem the model solves. C *==========================================================* CEOP #ifndef _CPP_EEMACROS_H_ #define _CPP_EEMACROS_H_ C In general the following convention applies: C ALLOW - indicates an feature will be included but it may C CAN have a run-time flag to allow it to be switched C on and off. C If ALLOW or CAN directives are "undef'd" this generally C means that the feature will not be available i.e. it C will not be included in the compiled code and so no C run-time option to use the feature will be available. C C ALWAYS - indicates the choice will be fixed at compile time C so no run-time option will be present C Flag used to indicate which flavour of multi-threading C compiler directives to use. Only set one of these. C USE_SOLARIS_THREADING - Takes directives for SUN Workshop C compiler. C USE_KAP_THREADING - Takes directives for Kuck and C Associates multi-threading compiler C ( used on Digital platforms ). C USE_IRIX_THREADING - Takes directives for SGI MIPS C Pro Fortran compiler. C USE_EXEMPLAR_THREADING - Takes directives for HP SPP series C compiler. C USE_C90_THREADING - Takes directives for CRAY/SGI C90 C system F90 compiler. #ifdef TARGET_SUN #define USE_SOLARIS_THREADING #define USING_THREADS #endif #ifdef TARGET_DEC #define USE_KAP_THREADING #define USING_THREADS #endif #ifdef TARGET_SGI #define USE_IRIX_THREADING #define USING_THREADS #endif #ifdef TARGET_HP #define USE_EXEMPLAR_THREADING #define USING_THREADS #endif #ifdef TARGET_CRAY_VECTOR #define USE_C90_THREADING #define USING_THREADS #endif #ifdef USE_OMP_THREADING #define USING_THREADS #endif C-- Define the mapping for the _BARRIER macro C On some systems low-level hardware support can be accessed through C compiler directives here. #define _BARRIER CALL BARRIER(myThid) C-- Define the mapping for the BEGIN_CRIT() and END_CRIT() macros. C On some systems we simply execute this section only using the C master thread i.e. its not really a critical section. We can C do this because we do not use critical sections in any critical C sections of our code! #define _BEGIN_CRIT(a) _BEGIN_MASTER(a) #define _END_CRIT(a) _END_MASTER(a) C-- Define the mapping for the BEGIN_MASTER_SECTION() and C END_MASTER_SECTION() macros. These are generally implemented by C simply choosing a particular thread to be "the master" and have C it alone execute the BEGIN_MASTER..., END_MASTER.. sections. #define _BEGIN_MASTER(a) IF ( a .EQ. 1 ) THEN #define _END_MASTER(a) ENDIF CcnhDebugStarts C Alternate form to the above macros that increments (decrements) a counter each C time a MASTER section is entered (exited). This counter can then be checked in barrier C to try and detect calls to BARRIER within single threaded sections. C Using these macros requires two changes to Makefile - these changes are written C below. C 1 - add a filter to the CPP command to kill off commented _MASTER lines C 2 - add a filter to the CPP output the converts the string N EWLINE to an actual newline. C The N EWLINE needs to be changes to have no space when this macro and Makefile changes C are used. Its in here with a space to stop it getting parsed by the CPP stage in these C comments. C #define _BEGIN_MASTER(a) IF ( a .EQ. 1 ) THEN N EWLINE CALL BARRIER_MS(a) C #define _END_MASTER(a) CALL BARRIER_MU(a) N EWLINE ENDIF C 'CPP = cat $< | $(TOOLSDIR)/set64bitConst.sh | grep -v '^[cC].*_MASTER' | cpp -traditional -P' C .F.f: C $(CPP) $(DEFINES) $(INCLUDES) | sed 's/N EWLINE/\n/' > $@ CcnhDebugEnds C-- Control storage of floating point operands C On many systems it improves performance only to use C 8-byte precision for time stepped variables. C Constant in time terms ( geometric factors etc.. ) C can use 4-byte precision, reducing memory utilisation and C boosting performance because of a smaller working C set size. However, on vector CRAY systems this degrades C performance. C- Note: global_sum/max macros were used to switch to JAM routines (obsolete); C in addition, since only the R4 & R8 S/R are coded, GLOBAL RS & RL macros C enable to call the corresponding R4 or R8 S/R. #ifdef REAL4_IS_SLOW #define _RS Real*8 #define RS_IS_REAL8 #define _GLOBAL_SUM_RS(a,b) CALL GLOBAL_SUM_R8 ( a, b) #define _GLOBAL_MAX_RS(a,b) CALL GLOBAL_MAX_R8 ( a, b ) #define _MPI_TYPE_RS MPI_DOUBLE_PRECISION #ifdef USE_OLD_MACROS_R4R8toRSRL #define _GLOBAL_SUM_R4(a,b) CALL GLOBAL_SUM_R8 ( a, b ) #define _GLOBAL_MAX_R4(a,b) CALL GLOBAL_MAX_R8 ( a, b ) #endif #else #define _RS Real*4 #define RS_IS_REAL4 #define _GLOBAL_SUM_RS(a,b) CALL GLOBAL_SUM_R4 ( a, b ) #define _GLOBAL_MAX_RS(a,b) CALL GLOBAL_MAX_R4 ( a, b ) #define _MPI_TYPE_RS MPI_REAL #ifdef USE_OLD_MACROS_R4R8toRSRL cph Needed for some backward compatibility with broken packages #define _GLOBAL_SUM_R4(a,b) CALL GLOBAL_SUM_R4 ( a, b ) #define _GLOBAL_MAX_R4(a,b) CALL GLOBAL_MAX_R4 ( a, b ) #endif #endif #define _RL Real*8 #define RL_IS_REAL8 #define _GLOBAL_SUM_RL(a,b) CALL GLOBAL_SUM_R8 ( a, b ) #define _GLOBAL_MAX_RL(a,b) CALL GLOBAL_MAX_R8 ( a, b ) #ifdef USE_OLD_MACROS_R4R8toRSRL cph Needed for some backward compatibility with broken packages #define _GLOBAL_SUM_R8(a,b) CALL GLOBAL_SUM_R8 ( a, b ) #define _GLOBAL_MAX_R8(a,b) CALL GLOBAL_MAX_R8 ( a, b ) #endif #define _MPI_TYPE_RL MPI_DOUBLE_PRECISION #define _MPI_TYPE_R4 MPI_REAL #if (defined (TARGET_SGI) || defined (TARGET_AIX) || defined (TARGET_LAM)) #define _MPI_TYPE_R8 MPI_DOUBLE_PRECISION #else #define _MPI_TYPE_R8 MPI_REAL8 #endif #define _R4 Real*4 #define _R8 Real*8 C- Note: a) exch macros were used to switch to JAM routines (obsolete) C b) exch R4 & R8 macros are not practically used ; if needed, C will directly call the corrresponding S/R. #define _EXCH_XY_RS(a,b) CALL EXCH_XY_RS ( a, b ) #define _EXCH_XY_RL(a,b) CALL EXCH_XY_RL ( a, b ) #define _EXCH_XYZ_RS(a,b) CALL EXCH_XYZ_RS ( a, b ) #define _EXCH_XYZ_RL(a,b) CALL EXCH_XYZ_RL ( a, b ) #ifdef USE_OLD_MACROS_R4R8toRSRL cph Needed for some backward compatibility with broken packages #define _EXCH_XY_R4(a,b) CALL EXCH_XY_RS ( a, b ) #define _EXCH_XY_R8(a,b) CALL EXCH_XY_RL ( a, b ) #define _EXCH_XYZ_R4(a,b) CALL EXCH_XYZ_RS ( a, b ) #define _EXCH_XYZ_R8(a,b) CALL EXCH_XYZ_RL ( a, b ) #endif C-- Control use of JAM routines for Artic network (no longer supported) C These invoke optimized versions of "exchange" and "sum" that C utilize the programmable aspect of Artic cards. CXXX No longer supported ; started to remove JAM routines. CXXX #ifdef LETS_MAKE_JAM CXXX #define _GLOBAL_SUM_RS(a,b) CALL GLOBAL_SUM_R8_JAM ( a, b) CXXX #define _GLOBAL_SUM_RL(a,b) CALL GLOBAL_SUM_R8_JAM ( a, b ) CXXX #define _EXCH_XY_RS(a,b) CALL EXCH_XY_R8_JAM ( a, b ) CXXX #define _EXCH_XY_RL(a,b) CALL EXCH_XY_R8_JAM ( a, b ) CXXX #define _EXCH_XYZ_RS(a,b) CALL EXCH_XYZ_R8_JAM ( a, b ) CXXX #define _EXCH_XYZ_RL(a,b) CALL EXCH_XYZ_R8_JAM ( a, b ) CXXX #endif C-- Control use of "double" precision constants. C Use D0 where it means REAL*8 but not where it means REAL*16 #ifdef REAL_D0_IS_16BYTES #define D0 #endif C-- Substitue for 1.D variables C Sun compilers do not use 8-byte precision for literals C unless .Dnn is specified. CRAY vector machines use 16-byte C precision when they see .Dnn which runs very slowly! #ifdef REAL_D0_IS_16BYTES #define _F64( a ) a #endif #ifndef REAL_D0_IS_16BYTES #define _F64( a ) DFLOAT( a ) #endif C-- Set the format for writing processor IDs, e.g. in S/R eeset_parms C and S/R open_copy_data_file. The default of I9.9 should work for C a long time (until we will use 10e10 processors and more) #define FMT_PROC_ID 'I9.9' #endif /* _CPP_EEMACROS_H_ */